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Abstract

Scaling the amount of compute used to train language models has dramatically improved
their capabilities. However, when it comes to inference, we often limit models to making only one
attempt at a problem. Here, we explore inference compute as another axis for scaling, using the
simple technique of repeatedly sampling candidate solutions from a model. Across multiple tasks
and models, we observe that coverage – the fraction of problems that are solved by any generated
sample – scales with the number of samples over four orders of magnitude. Interestingly, the
relationship between coverage and the number of samples is often log-linear and can be modelled
with an exponentiated power law, suggesting the existence of inference-time scaling laws. In
domains like coding and formal proofs, where answers can be automatically verified, these
increases in coverage directly translate into improved performance. When we apply repeated
sampling to SWE-bench Lite, the fraction of issues solved with DeepSeek-Coder-V2-Instruct
increases from 15.9% with one sample to 56% with 250 samples, outperforming the single-sample
state-of-the-art of 43%. In domains without automatic verifiers, we find that common methods
for picking from a sample collection (majority voting and reward models) plateau beyond several
hundred samples and fail to fully scale with the sample budget.

1 Introduction

The ability of large language models (LLMs) to solve coding, mathematics, and other reasoning
tasks has improved dramatically over the past several years [47, 11, 2, 4]. Scaling the amount of
training compute through bigger models, longer pre-training runs, and larger datasets has been a
consistent driver of these gains [27, 37, 28].

In contrast, a comparatively limited investment has been made in scaling the amount of
computation used during inference. Larger models do require more inference compute than smaller
ones, and prompting techniques like chain-of-thought [61] can increase answer quality at the cost
of longer (and therefore more computationally expensive) outputs. However, when interacting
with LLMs, users and developers often restrict models to making only one attempt when solving a
problem.

Title inspired by https://en.m.wikipedia.org/wiki/Infinite_monkey_theorem.
Code: https://github.com/ScalingIntelligence/large_language_monkeys.
Data: https://huggingface.co/datasets/ScalingIntelligence/monkey_business.
∗ Equal Contribution. Work done by BB as a visiting researcher at Stanford.
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x = int(input()) …
Problem: Input 
a number from 

stdin and …

Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer.

Problem 1 (coverage): Can we generate a correct 
solution?

Problem 2 (precision): Can we identify a correct 
solution from the generated samples?

Verifier
(e.g. unit tests, proof 

checkers, majority voting)

data = {} …

import requests …

LLM

x = int(input()) …

Figure 1: The repeated sampling procedure that we follow in this paper. 1) We generate many independent candidate
solutions for a given problem by sampling from an LLM with a positive temperature. 2) We use a domain-specific
verifier (ex. unit tests for code) to select a final answer from the generated samples.

In this work, we explore repeated sampling (Figure 1) as a simple approach to scaling inference
compute in order to improve reasoning performance. Existing work provides encouraging examples
that repeated sampling can be beneficial in math, coding, and puzzle-solving settings [60, 48,
23]. Notably, AlphaCode [41], a state-of-the-art system for competitive programming, finds that
performance continues to improve with a million samples per problem. Our goal is to systematically
characterize these benefits across a range of tasks, models, and sample budgets.

The effectiveness of repeated sampling is determined by two key properties:

1. Coverage: As the number of samples increases, what fraction of problems can we solve using
any sample that was generated?

2. Precision: How often can we identify correct samples from our collection of generations?

Both properties are needed for achieving strong real-world performance. With unlimited samples,
any model that assigns a non-zero probability to every sequence will achieve perfect coverage.
However, repeated sampling is only practical if we can improve coverage with a feasible budget.
Similarly, generating large sample collections is only useful if the correct samples in a collection can
be identified. The difficulty of the precision problem can vary by task. In some settings, existing
tools like proof checkers and unit tests can automatically verify every sample. In other cases, like
when solving word problems, other methods for verification are needed.

Exploring coverage first, we find that sampling up to 10,000 times per problem can significantly
boost coverage on math and coding tasks (Section 2). When solving CodeContests [41] programming
problems using Gemma-2B [52], we increase coverage by over 300x, from 0.02% with one sample to
7.1% with 10,000 samples. Interestingly, the relationship between log(coverage) and the number of
samples often follows an approximate power law (Section 3). With Llama-3 [3] and Gemma models,
this leads to coverage growing nearly log-linearly with the number of samples over several orders of
magnitude.

In settings with automatic verification tools, increases in coverage translate directly into improved
task performance. When applying repeated sampling to competitive programming and writing
Lean proofs, models like Llama-3-8B-Instruct can exceed the single-sample performance of much
stronger ones like GPT-4o [2]. This ability to amplify weaker models extends to the challenging
SWE-bench Lite dataset of real-life GitHub issues [32], where the current single-sample state-of-the-
art (SOTA), achieved by a mixture of GPT-4o and Claude 3.5 Sonnet, is 43% [1]. When restricted to
a single sample, DeepSeek-Coder-V2-Instruct [20] solves only 15.9% of issues. By simply increasing
the number of samples to 250, we increase the fraction of solved issues to 56%, exceeding the
state-of-the-art by 13%.

In addition to improving model quality, repeated sampling provides a new mechanism for
minimizing LLM inference costs (Section 2.3). When holding the total number of inference FLOPs
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constant, we find that on some datasets (e.g. MATH), coverage is maximized with a smaller model
and more samples, while on others (e.g CodeContests) it is better to sample fewer times from a larger
model. We also compare API prices between DeepSeek-Coder-V2-Instruct, GPT-4o, and Claude
Sonnet 3.5 in the context of solving SWE-bench Lite issues. When keeping the agent framework
(Moatless Tools [67]) constant, sampling five times from the weaker and cheaper DeepSeek model
solves more issues than single samples from Claude or GPT while also being over 3x cheaper.

Finally, we demonstrate that scalable verification is necessary for fully benefiting from repeated
sampling. As the number of samples increases, coverage improves through models generating correct
solutions to problems they have not previously solved. However, these increasingly rare correct
generations are only beneficial if verifiers can “find the needle in the haystack” and identify them
from collections of mostly-incorrect samples. In math word problem settings, we find that two
common methods for verification (majority voting and reward models) do not possess this ability.
When solving MATH [26] problems with Llama-3-8B-Instruct, coverage increases from 82.9% with
100 samples to 98.44% with 10,000 samples. However, when using majority voting or reward models
to select final answers, the biggest performance increase is only from 40.50% to 41.41% over the
same sample range. As the number of samples increases, the gap between coverage (i.e. performance
with a perfect verifier) and the performance of these methods increases as well (Figure 7).

In summary, our primary observations are:

1. We demonstrate that scaling inference compute through repeated sampling leads to large
improvements in coverage across a variety of tasks and models. This makes it possible, and
sometimes cost-effective, to amplify weaker models with many samples and outperform single
samples from more capable models.

2. We show that the relationship between coverage and the number of samples can often be
modelled using an exponentiated power law, suggesting a form of scaling laws for inference-time
compute.

3. In domains without automatic verifiers, we show that common approaches to verification
plateau beyond approximately 100 samples. This leads to a growing gap between the perfor-
mance achieved with these methods and the coverage upper bound.

2 Scaling Repeated Sampling

We focus on pass-fail tasks where a candidate solution can be scored as right or wrong. The primary
metric of interest for these tasks is the success rate: the fraction of problems that we are able to
solve. With repeated sampling, we consider a setup where a model can generate many candidate
solutions while attempting to solve a problem. The success rate is therefore influenced both by
the ability to generate correct samples for many problems (i.e. coverage), as well as the ability to
identify these correct samples (i.e. precision).

The difficulty of the precision problem depends on the availability of tools for sample verification.
When proving formal statements in Lean, proof checkers can quickly identify whether a candidate
solution is correct. Similarly, unit tests can be used to verify candidate solutions to coding tasks.
In these cases, precision is handled automatically, and improving coverage directly translates into
higher success rates. In contrast, the tools available for verifying solutions to math word problems
from GSM8K and MATH are limited, necessitating additional verification methods that decide on a
single final answer from many (often conflicting) samples.

We consider the following five tasks:
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1. GSM8K: A dataset of grade-school level math word problems [18]. We evaluate on a random
subset of 128 problems from the GSM8K test set.

2. MATH: Another dataset of math word problems that are generally harder than those from
GSM8K [13]. Similarly, we evaluate on 128 random problems from this dataset’s test set.

3. MiniF2F-MATH: A dataset of mathematics problems that have been formalized into proof
checking languages [65]. We use Lean4 as our language, and evaluate on the 130 test set
problems that are formalized from the MATH dataset.

4. CodeContests: A dataset of competitive programming problems [41]. Each problem has a
text description, along with a set of input-output test cases (hidden from the model) that can
be used to verify the correctness of a candidate solution. We enforce that models write their
solutions using Python3.

5. SWE-bench Lite: A dataset of real world Github issues, where each problem consists of a
description and a snapshot of a code repository [32]. To solve a problem, models must edit
files in the codebase (in the Lite subset of SWE-bench that we use, only a single file needs to
be changed). Candidate solutions can be automatically checked using the repository’s suite of
unit tests.

Among these tasks, MiniF2F-MATH, CodeContests, and SWE-bench Lite have automatic
verifiers (in the form of the Lean4 proof checker, test cases, and unit test suites, respectively). We
begin by investigating how repeated sampling improves model coverage. Coverage improvements
correspond directly with increased success rates for tasks with automatic verifiers and in the general
case provide an upper bound on the success rate. In coding settings, our definition of coverage is
equivalent to the commonly-used pass@k metric [15], where k denotes the number of samples per
problem. We use this metric directly when evaluating on CodeContests and SWE-bench Lite. For
MiniF2F the metric is similar, with a “pass” defined according to the Lean4 proof checker. For
GSM8K and MATH, coverage corresponds to using an oracle verifier that checks if any sample
“passes” by outputting the correct final answer. To reduce the variance when calculating coverage, we
adopt the unbiased estimation formula from Chen et al. [15]. In each experiment, we first generate
N samples for each problem index i and calculate the number of correct samples Ci. We then
calculate the pass@k scores at each k ≤ N of interest according to:

pass@k =
1

# of problems

# of problems∑
i=1

(
1−

(
N−Ci

k

)(
N
k

) )
(1)

We use the numerically stable implementation of the above formula suggested in Chen et al.
[15]. Data and code is available at https://scalingintelligence.stanford.edu/pubs/large_
language_monkeys/.

2.1 Repeated Sampling is Effective Across Tasks

Here, we establish that repeated sampling improves coverage across multiple tasks and a range
of sample budgets. We evaluate Llama-3-8B-Instruct and Llama-3-70B-Instruct on CodeContests,
MiniF2F, GSM8K, and MATH, generating 10,000 independent samples per problem. For SWE-
bench Lite, we use DeepSeek-Coder-V2-Instruct [20], as the required context length of this task
exceeds the limits of the Llama-3 models. As is standard when solving SWE-bench issues, we equip
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Figure 2: Across five tasks, we find that coverage (the fraction of problems solved by at least one generated sample)
increases as we scale the number of samples. Notably, using repeated sampling, we are able to increase the solve rate
of an open-source method from 15.9% to 56% on SWE-bench Lite.

our LLM with a software framework that provides the model with tools for navigating through
and editing codebases. In our work, we use the open-source Moatless Tools library [67]. Note that
solving a SWE-bench issue involves a back-and-forth exchange between the LLM and Moatless Tools.
One sample/attempt for this benchmark refers to one entire multi-turn trajectory. To minimize
costs, we restrict the number of attempts per issue to 250, with all attempts made independently of
one another.

We report our results in Figure 2. We also include the single-attempt performance of GPT-4o on
each task, as well the single-attempt state-of-the-art for SWE-bench Lite (CodeStory Aide [1] which
uses a combination of GPT-4o and Claude 3.5 Sonnet). Across all five tasks, we find that coverage
smoothly improves as the sample budget increases. When all LLMs are given a single attempt,
GPT-4o outperforms the Llama and DeepSeek models at every task. However, as the number of
samples increases, all three of the weaker models exceed GPT-4o’s single-attempt performance. In
the case of SWE-bench Lite, we solve 56% of problems, exceeding the single-attempt SOTA of 43%.

2.2 Repeated Sampling is Effective Across Model Sizes and Families

The results from Section 2.1 indicate that repeated sampling improves coverage. However, we only
show this trend for three recent, instruction-tuned models with 8B or more parameters. We now
show that these trends hold across other model sizes, families, and levels of post-training. We
expand our evaluation to include a broader set of models:

• Llama 3: Llama-3-8B, Llama-3-8B-Instruct, Llama-3-70B-Instruct.

• Gemma: Gemma-2B, Gemma-7B [52].

• Pythia: Pythia-70M through Pythia-12B (eight models in total) [9].

We restrict evaluation to the MATH and CodeContests datasets to minimize inference costs,
reporting results in Figure 3. Coverage increases across almost every model we test, with smaller
models showing some of the sharpest increases in coverage when repeated sampling is applied. On
CodeContests, the coverage of Gemma-2B increases by over 300x, from a pass@1 of 0.02% to a
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Figure 3: Scaling inference time compute via repeated sampling leads to consistent coverage gains across a variety of
model sizes (70M-70B), families (Llama, Gemma and Pythia) and levels of post-training (Base and Instruct models).

pass@10k of 7.1%. Similarly, when solving MATH problems with Pythia-160M, coverage increases
from a pass@1 of 0.27% to a pass@10k of 57%.

The exception to this pattern of increasing coverage across models is with the Pythia family
evaluated on CodeContests. All Pythia models achieve zero coverage on this dataset, even with a
budget of 10,000 samples. We speculate that this due to Pythia being trained on less coding-specific
data than Llama and Gemma.

2.3 Repeated Sampling Can Help Balance Performance and Cost

One takeaway from the results in Sections 2.1 and 2.2 is that repeated sampling makes it possible
to amplify a weaker model’s capabilities and outperform single samples from stronger models. Here,
we demonstrate that this amplification can be more cost-effective than using a stronger, more
expensive model, providing practitioners with a new degree of freedom when trying to jointly
optimize performance and costs.

We first consider FLOPs as a cost metric, examining the Llama-3 results from Section 2.1. We
re-plot our results from Figure 2, now visualizing coverage as a function of total inference FLOPs
instead of the sample budget. Since Llama-3 models are dense transformers where the majority of
parameters are used in matrix multiplications, we approximate inference FLOPs with the formula:

FLOPsPerToken(ContextLen) ≈ 2 ∗ (NumParameters + 2 ∗NumLayers ∗ TokenDim ∗ ContextLen)

TotalInferenceFLOPs ≈

(
NumPromptTokens∑

t=1

FLOPsPerToken(t)

)
+(

NumDecodeTokens∑
t=1

FLOPsPerToken(t+NumPromptTokens) ∗NumCompletions

)

We present our re-scaled results for MiniF2F, CodeContests, MATH, and GSM8K in Figure 4. Interestingly,
the model that maximizes coverage varies with the compute budget and task. On MiniF2F, GSM8K and
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Figure 4: Comparing cost, measured in number of inference FLOPs, and coverage for Llama-3-8B-Instruct and Llama-
3-70B-Instruct. We see that the ideal model size depends on the task, compute budget, and coverage requirements.
Note that Llama-3-70B-Instruct does not achieve 100% coverage on GSM8K due to an incorrectly labelled ground
truth answer: see Appendix E.

Model
Cost per
attempt
(USD)

Number of
attempts

Issues
solved (%)

Total cost
(USD)

Relative
total cost

DeepSeek-Coder-V2-Instruct 0.0072 5 29.62 10.8 1x
GPT-4o 0.13 1 24.00 39 3.6x
Claude 3.5 Sonnet 0.17 1 26.70 51 4.7x

Table 1: Comparing API cost (in US dollars) and performance for various models on the SWE-bench Lite dataset
using the Moatless Tools agent framework. When sampled more, the open-source DeepSeek-Coder-V2-Instruct model
can achieve the same issue solve-rate as closed-source frontier models for under a third of the price.

MATH, Llama-3-8B-Instruct always obtains higher coverage than the larger (and more expensive) 70B model
when the FLOP budget is fixed. However for CodeContests, the 70B model is almost always more cost
effective. We note that examining FLOPs alone can be a crude cost metric that ignores other aspects of
system efficiency [21]. In particular, repeated sampling can make use of high batch sizes and specialized
optimizations that improve system throughput relative to single-attempt inference workloads [34, 6, 66]. We
discuss this in more detail in Section 5.

We also examine the dollar costs of repeated sampling when solving SWE-bench Lite issues using current
API pricing. Keeping the agent framework (Moatless Tools) constant, we consider making a single attempt per
issue with Claude 3.5 Sonnet and GPT-4o, as well as repeated sampling using DeepSeek-Coder-V2-Instruct.
We report the average cost per issue and issue resolution rate with each approach in Table 1. While the
DeepSeek model is weaker than the GPT and Claude models, it is also over 10x cheaper. In this case, repeated
sampling provides a cheaper alternative to paying a premium for access to strong models while achieving a
superior issue solve rate.

3 Characterizing the Benefits of Repeated Sampling

The relationship between an LLM’s loss and its training compute has been well-characterized with training
scaling laws [27, 36, 28]. These laws have empirically held over many orders of magnitude and inspire
confidence in model developers that large investments in training will pay off. Inspired by training scaling
laws, here we aim to better characterize the relationship between coverage and the sample budget (i.e. the
amount of inference compute), presenting two interesting observations:

1. The relationship between coverage and the number of samples can often be modelled with an exponen-
tiated power law.
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Figure 5: The relationship between coverage and the number of samples can be modelled with an exponentiated power
law for most tasks and models. We highlight that some curves, such as Llama-3-8B-Instruct on MiniF2F-MATH, do
not follow this trend closely. We show the mean and standard deviation of the error between the coverage curve and
the power law fit across 100 evenly sampled points on the log scale.

2. For a given task, the coverage curves of different models from the same family resemble S-curves with
similar slopes but distinct horizontal offsets.

3.1 Scaling Laws for Repeated Sampling

Here, we develop an explicit model for the relationship between coverage and the number of samples. The
GPT-4 technical report [46] finds that the relationship between a model’s mean-log-pass-rate on coding
problems and its training compute can be modelled well using a power law. We start by adopting the same
function class, but now modelling the log of coverage c as a function of the number of samples k:

log(c) ≈ akb (2)

where a, b ∈ R are fitted model parameters. In order to directly predict coverage, we exponentiate both sides,
ending up with the final model of:

c ≈ exp(akb) (3)

We provide examples of fitted coverage curves in Figure 5, and additional curves in Appendix C.2. While these
laws are not as exact as training scaling laws (most strikingly on MiniF2F-MATH), they provide encouraging
early evidence that the benefits of inference scaling can be characterized.

3.2 Similarities in Coverage Curves Across Models

Interestingly, when comparing the coverage curves (with a logarithmic x-axis) of different models from the
same family on the same task (see Figure 3), it appears that the traced S-curves have the same slope, but
unique horizontal offsets. To investigate this further, we overlay the coverage curves of different models from
the same family in Figure 6. We do this by picking an anchor coverage value c, and shifting every curve
leftward (in log-space) so that each passes through the point (1, c). This corresponds to a leftward shift by
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Figure 6: Overlaying the coverage curves from different models belonging to the same family. We perform this overlay
by horizontally shifting every curve (with a logarithmic x-axis) so that all curves pass through the point (1, c). We pick
c to be the maximum pass@1 score over all models in the plot. We note that the similarity of the curves post-shifting
shows that, within a model family, sampling scaling curves follow a similar shape.

log(pass@k−1(c)), where pass@k−1(c) denotes the closest natural number k such that pass@k = c. We pick c
to be the maximum pass@1 score over all models from the same family. These similarities demonstrate that
across models from the same family, the increase in the log-sample-budget (or equivalently, the multiplicative
increase in the sample budget) needed to improve coverage from c to c′ is approximately constant.

4 Harnessing Repeated Sampling Requires Precision

So far, we have focused on measuring model coverage, characterizing the benefits of repeated sampling under
the scenario where we can always identify correct model samples. We now turn to the complementary problem
of precision: given a collection of model samples, how often can we identify the correct ones? In particular,
we are interested in the performance of verifiers as we scale up the number of samples. For some problems,
correct solutions are sampled from the model at low probabilities (e.g. 1% or lower, see Figure 8). As the
number of samples increases and rare, correct solutions are generated for more problems, model coverage
improves. In order to convert these coverage improvements into higher success rates, verifiers must be able to
find the “needle in the haystack” and identify infrequent correct samples.

4.1 Common Verification Methods Don’t Always Scale with the Sample Budget

Of the five tasks we evaluate, only GSM8K and MATH lack tools for automatically verifying solutions. We
test three simple and commonly used verification approaches on their ability to identify correct solutions
from these datasets:

1. Majority Vote: We pick the most common final answer [60].

2. Reward Model + Best-of-N: We use a reward model [17] to score each solution, and pick the
answer from the highest-scoring sample.

3. Reward Model + Majority Vote: We calculate a majority vote where each sample is weighted by
its reward model score.

We reuse the collections of 10,000 samples that we generated with Llama-3-8B-Instruct and Llama-3-70B-
Instruct in Section 2. We use ArmoRM-Llama3-8B-v0.1 [57] as a reward model, which scores highly on the
reasoning section of the RewardBench leaderboard [39]. We report our results in Figure 7 as we increase the
number of samples. While success rates initially increase with the number of samples for all three methods,
they plateau around 100 samples. Meanwhile, coverage continues to increase with the number of samples and
eventually exceeds 95%. In the case of majority voting, this success rate saturation is intuitive, since the
occurrence of rare, correct solutions does not affect the most common answer that majority voting chooses.
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Figure 7: Comparing coverage (performance with an oracle verifier) to mainstream methods available for picking the
correct answer (majority voting, reward model selection and reward model majority voting) as we increase the number
of samples. Although near-perfect coverage is achieved, all sample selection methods fail to reach the coverage upper
bound and saturate before reaching 100 samples. For every k value, we calculate the metric on 100 subsets of size k
then plot the mean and one standard deviation across subsets.

Given the poor performance of these verifiers (in particular the reward model), it is reasonable to wonder
how “hard” it is to verify a candidate solution. With GSM8K and MATH, only a sample’s final answer is
used for assessing correctness, with the intermediate chains of thought being discarded. If models generated
only non-sensical chains of thought before guessing a correct final answer, verification may not be any
easier than solving the problem in the first place. We investigate this question by manually evaluating 105
chains-of-thought from correct Llama-3-8B-Instruct samples to GSM8K problems, reporting our results in
Table 2.

We find that over 90% of the chains-of-thought that we graded are faithful, even among problems where
correct answers are generated infrequently. These correct reasoning steps indicate that there is signal for
a verifier to exploit when identifying correct samples. Interestingly, during this process we also identified
one GSM8K problem that has an incorrect ground truth answer (see Appendix E). This incorrect GSM8K
problem is also the only one that Llama-3-70B-Instruct did not generate a “correct” sample for across 10,000
attempts.

Pass@1 # Problems # CoT Graded Correct CoT Incorrect CoT Incorrect Ground Truth

0-10% 5 15 11 1 1 problem, 3 CoTs
10-25% 10 30 27 3 0 problems
25-75% 29 30 28 2 0 problems
75-100% 84 30 30 0 0 problems

Table 2: Human evaluation of the validity of the Chain-of-Thought reasoning in Llama-3-8B-Instruct answers to
GSM8K problems. 3 chains of thought were graded per problem. Even for difficult questions, where the model only
gets ≤ 10% of samples correct, the CoTs almost always follow valid logical steps. For the model generations and
human labels, see here.

4.2 Verifiers and Software Tasks: Two Cautionary Tales

Software development tasks can occupy a middle-ground with respect to available verification tools. On
one hand, the ability to execute and test code allows for a higher degree of automatic verification than
is possible with unstructured language tasks. However, tools like unit tests take a black-box approach to
verifying a piece of code and are not as comprehensive as methods like proof checkers. These imperfections
in the verification process can lead to false positives and/or false negatives that are important to consider
when applying repeated sampling. Below we provide two examples of software verifier imperfections that we
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Figure 8: Bar charts showing the fraction of samples (out of 10,000 samples) that are correct, for each problem in the
subsets of GSM8K and MATH we evaluate on. There is one bar per problem, and the height of the bar corresponds to
the fraction of samples that arrive at the correct answer. Bars are green if self-consistency picked the correct answer
and are red otherwise. We highlight that there are many problems with correct solutions, where the correct solutions
are sampled infrequently.

encountered when generating our results from Section 2.1.

4.2.1 Flaky Tests in SWE-bench Lite

When producing our results on SWE-bench Lite, we identified that 11.3% of problems have flaky test suites
that do not produce consistent results when running them on the same candidate solution. These flaky tests
occasionally classify even the dataset’s ground-truth issue solutions as incorrect. Additionally, the test suites
for some issues can be non-determinstic depending on the candidate solution. For example, two SWE-bench
Lite issues involve manipulating Python sets, which are naturally unordered. The gold solutions for these
issues explicitly order the items in the set and pass the test suites reliably. However, some model-generated
candidate solutions do not impose such an ordering, and therefore pass the tests on some “lucky” runs and
not others. In Appendix B, we list all of the problem IDs where we identified flaky tests. We also report our
SWE-bench Lite results from Figure 2 with the problematic issues removed, finding similar results to our
evaluations on the whole dataset.

4.2.2 False Negatives in CodeContests

Each problem from the CodeContests dataset comes with a set of input-output test cases used to asses the
correctness of solutions. These test cases are more comprehensive than those from earlier coding benchmarks
like APPS [25], cutting down on the frequency of false positive solutions that pass all test cases but do not
fully solve the described problem. However, the construction of the CodeContests test suites leads to false
negative solutions that are correct but fail the tests.

For some CodeContests problems, the problem description allows for multiple distinct correct outputs for
a given test input. However, the corresponding test cases do not handle these scenarios, instead requiring
that one particular correct output is emitted. Additionally, many CodeContests test cases have been
programmatically generated by mutating original test cases from the problem. Some mutated inputs violate
the problem’s input specifications (e.g. a mutated input being zero when the description promises a positive
integer). These malformed test cases can lead to inconsistent behaviour between different correct solutions.

We assess the prevalence of these issues by running each problem’s test suite on the list of correct solutions
that CodeContests provides. Of the 122 problems in the test set that have Python3 solutions, we find that 35
problems have “correct” solutions that fail the corresponding tests. Since we do not allow models to view all
of a problem’s test cases (and their peculiarities), applying repeated sampling to these problems contains an
element of “rolling the dice” to generate a solution that is not only correct, but emits the particular outputs
that pass the tests.
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5 Discussion and Limitations

In this work, we explore repeated sampling as an axis for scaling compute at inference time in order to
improve model performance. Across a range of models and tasks, repeated sampling can significantly improve
the fraction of problems solved using any generated sample (i.e. coverage). When correct solutions can
be identified (either with automatic verification tools or other verification algorithms), repeated sampling
can amplify model capabilities during inference. This amplification can make the combination of a weaker
model and many samples more performant and cost-effective than using fewer attempts from a stronger,
more expensive model.

Improving Repeated Sampling: In our experiments, we explore only a simple version of repeated sampling
where all attempts to a problem are generated independently of one another using the exact same prompt
and hyperparameters. We believe that this setup can be refined to improve performance, particularly along
the following directions:

1. Solution Diversity: We currently rely on a positive sampling temperature as the sole mechanism
for creating diversity among samples. Combining this token-level sampling with other, higher-level
approaches may be able to further increase diversity. For example, AlphaCode conditions different
samples with different metadata tags.

2. Multi-Turn Interactions: Despite automatic verification tools being available when solving Code-
Contests and MiniF2F problems, we use only a single-turn setup where models generate a solution
without any ability to iterate on it. Providing models with execution feedback from these tools should
improve solution quality. We are interested in the tradeoffs associated with multi-turn interactions,
since each attempt becomes more expensive, but also may be more likely to succeed.

3. Learning From Previous Attempts: Currently, our experiments fully isolate attempts from each
other. Access to existing samples, particularly if verification tools can provide feedback on them, may
be helpful when generating future attempts.

Repeated Sampling and Inference Systems: Repeated sampling is a distinct LLM inference workload
from serving chatbot requests. Production chatbot deployments place an emphasis on low response latencies,
and adhering to latency targets can force a lower per-device batch size and reduce hardware utilization. In
contrast, when sampling many completions to a single prompt, a larger emphasis can be placed on overall
throughput and maximizing hardware utilization. Additionally, repeated sampling can benefit from specialized
attention optimizations that exploit overlaps in prompts across sequences [34, 6, 66]. Repeated sampling
inference can therefore be accomplished at a lower cost than naively making many parallel requests to a
chatbot-oriented API. These cost savings can further motivate choosing to sample many times from a cheaper
model instead of fewer times from a more expensive one.

Verifiers: Our results from Section 4 highlight the importance of improving sample verification methods
when tools for automatically doing so are unavailable. Equipping models with the ability to assess their own
outputs will allow repeated sampling to be scaled to far more tasks. Of particular interest is applying repeated
sampling to unstructured tasks like creative writing, which can require a more subjective comparison between
different samples than the pass-fail tasks we consider. An alternative direction to developing model-based
verifiers is to design converters that can make an unstructured task verifiable, for example by formalizing an
informal math statement into a language like Lean so that proof checkers can be applied.

6 Related Work

Scaling Inference Compute: Methods that perform additional computation during inference have been
successful across many areas of deep learning. Across a variety of game environments, state-of-the-art
methods leverage inference-time search to examine many possible future game states before deciding on a
move [12, 50, 10]. Similar tree-based methods can also be effective in combination with LLMs, allowing
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models to better plan and explore different approaches [63, 8, 53, 54]. Another axis for increasing LLM
inference compute allows models to spend tokens deliberating on a problem before coming to a solution
[62, 61, 64]. Additionally, multiple models can be ensembled together at inference time to combine their
strengths [58, 14, 45, 56, 31]. Yet another approach involves using LLMs to critique and refine their own
responses [43, 7].

Repeated Sampling: Previous work has demonstrated that repeated sampling can improve LLM capabilities
in multiple domains. One of the most effective use cases is coding [48, 15, 38], where performance continues to
scale up to a million samples and verification tools (e.g. unit tests) are often available to automatically score
every candidate solution. Recently, Greenblatt [23] shows that repeated sampling is effective when solving
puzzles from the ARC challenge [16], observing log-linear scaling as the number of samples increases. In
chat applications, repeated sampling combined with best-of-N ranking with a reward model can outperform
greedily sampling a single response [30]. In domains without automatic verification tools, existing work shows
that using majority voting [60], prompting an LLM [19], or training a model-based verifier [18, 42, 29, 59, 35],
to decide on a final answer can improve performance on reasoning tasks relative to taking a single sample.
Nguyen et al. [44] finds that performing majority voting over answers that exceed a threshold length can
outperform voting across all answers. Concurrent with our work, Song et al. [51] finds that using the best
available sample improves LLM performance on chat, math, and code tasks, sweeping up to a max of 128
samples. Additionally, Hassid et al. [24] find that when solving coding tasks, it can be more effective to draw
more samples from a smaller model than draw fewer samples from a larger one.

Scaling Laws: Characterizing how scaling affects model performance can lead to more informed decisions
on how to allocate resources. Scaling laws for LLM training find a power law relationship between loss and
the amount of training compute and provide estimates for the optimal model and dataset size given a fixed
compute budget [27, 36, 28]. Jones [33] finds scaling laws in the context of the board game Hex, observing
that performance scales predictably with model size and the difficulty of the problem. Interestingly, they
also show that performance scales with the amount of test-time compute spent while performing tree search.
Recently, Shao et al. [49] observe scaling laws when augmenting LLMs with external retrieval datasets, finding
that performance on retrieval tasks scales smoothly with the size of the retrieval corpus.
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Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
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A Sampling Experimental Setup

A.1 Lean Formal Proofs

We report results on the 130 questions in the test set of the lean4 MiniF2F dataset that correspond to
formalized MATH problems. This dataset is derived from the fixed version of the original MiniF2F dataset
created by Zheng et al. [65]. We sample with a temperature of 0.5 and do not use nucleus sampling. We
generated 10, 000 samples per problem. We use proofs of the following 5 theorems from the validation set as
few-shot examples:

• mathd_algebra_116

• amc12_2000_p5

• mathd_algebra_132

• mathd_algebra_11

• mathd_numbertheory_84

Our prompt consists of:

1. Few shot examples.

2. Header imports present in each problem in the HuggingFace dataset cat-searcher/minif2f-lean4
dataset, an upload of the lean4 MiniF2F dataset.

3. The theorem definition. In order to avoid leaking information about how to solve the theorem from its
name, we replace the name of the theorem with theorem_i. i ∈ {1, 2, 3, 4, 5} for the few-shot examples
and i = 6 for the current problem.

We set 200 as the max token length for the generated solution. To grade solutions, we use the
lean-dojo 1.1.2 library with lean version 4.3.0-rc2. We set a timeout of 10 seconds for every tactic step.

Few-Shot Example

Write a lean4 proof to the provided formal statement. You have access to the standard mathlib4
library.
```import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Real.Basic
import Mathlib.Data.Complex.Basic
import Mathlib.Data.Nat.Log
import Mathlib.Data.Complex.Exponential
import Mathlib.NumberTheory.Divisors
import Mathlib.Data.ZMod.Defs
import Mathlib.Data.ZMod.Basic
import Mathlib.Topology.Basic
import Mathlib.Data.Nat.Digits

open BigOperators
open Real
open Nat
open Topology
theorem theorem1
Int.floor ((9:R) / 160 * 100) = 5 :=
by (
rw [Int.floor eq iff]
constructor
all goals norm num
)```
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Example Prompt

Write a lean4 proof to the provided formal statement. You have access to the standard mathlib4
library.
```import Mathlib.Algebra.BigOperators.Basic
import Mathlib.Data.Real.Basic
import Mathlib.Data.Complex.Basic
import Mathlib.Data.Nat.Log
import Mathlib.Data.Complex.Exponential
import Mathlib.NumberTheory.Divisors
import Mathlib.Data.ZMod.Defs
import Mathlib.Data.ZMod.Basic
import Mathlib.Topology.Basic
import Mathlib.Data.Nat.Digits

open BigOperators
open Real
open Nat
open Topology
theorem theorem6
(b h v : R)
(h0 : 0 < b ∧ 0 < h ∧ 0 < v)
(h1 : v = 1 / 3 * (b * h))
(h2 : b = 30)
(h3 : h = 13 / 2) :
v = 65 :=
by (

A.2 CodeContests

We report results on the 140 test set questions that do not include image tags in the problem description.
We sample with a temperature of 0.6 and a top-p value of 0.95 following the experiments in CodeLlama [48].
We generate 10,000 samples per problem. We use two few-shot examples from the training set that are
randomly sampled per-problem. We set 1024 as the max token length for the generated solution. We use the
same answer comparison function as [41] and use the concatenation of public, private, and generated tests to
validate correctness of solutions.
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Few-Shot Example

Q: Write python code to solve the following coding problem that obeys the constraints and passes the
example test cases. The output code needs to read from and write to standard IO. Please wrap your
code answer using ```:
Petya has equal...
...
(Rest of question and input/output examples)
...
A: ```

n = int(input())

a = int(input())

b = int(input())

ans = 6

cnt = 0

cur = 2

cnt += 2 * ((n - b) // a)

while cnt < 4:

cur += 1

cnt += (n // a)

ans = min(ans, cur)

if b * 2 <= n:

cur, cnt = 0, 0

cur = 1

cnt += ((n - 2 * b) // a)

while cnt < 4:

cur += 1

cnt += (n // a)

ans = min(ans, cur)

print(ans)

```

Example Prompt

Q: Write python code to solve the following coding problem that obeys the constraints and passes the
example test cases. The output code needs to read from and write to standard IO. Please wrap your
code answer using ```:
This is the...
...
(Rest of question and input/output examples)
...
A:

A.3 MATH

We report results on 128 randomly selected test-set problems. We sample with a temperature of 0.6 and do
not use nucleus sampling. We use the fixed 5 few-shot example from [40] for each problem. We generate
10, 000 samples per problem. We set 512 as the max token length for the generated solution. To grade
solutions, we use the minerva_math functions from LMEval [22] to extract the model’s final answer. We then
check correctness if the extracted answer is an exact string match to the ground truth, or if the is_equiv

function from minerva_math in LMEval evaluates to true.
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Few-Shot Example

Problem:
If detA = 2 and detB = 12, then find det(AB).
Solution:
We have that det(AB) = (detA)(detB) = (2)(12) = 24 . Final Answer: The final answer is 24. I
hope it is correct.

Example Prompt

Problem:
What is the domain of the function

f(x) =
(2x− 3)(2x+ 5)

(3x− 9)(3x+ 6)
?

Express your answer as an interval or as a union of intervals.
Solution:

A.4 GSM8K

We report results on 128 randomly sampled test-set problems. We sample with a temperature of 0.6 and
do not use nucleus sampling. We use 5 few-shot examples from the training set that are randomly sampled
per-problem. We generate 10, 000 samples per problem. We set 512 as the max token length for the generated
solution. To grade solutions, we follow LMEval [22] and extract answers using a regular expression that
extracts the string after the quadruple hashes. Similar to MATH, we then assess correctness by checking if
the extracted answer is an exact string match to the ground truth or if is_equiv evaluates to true.

Few-Shot Example

Question: James decides to replace his car. He sold his $20,000 car for 80% of its value and then was
able to haggle to buy a $30,000 sticker price car for 90% of its value. How much was he out of pocket?
Answer: He sold his car for 20000*.8=$<<20000*.8=16000>>16,000 He bought the new car for
30,000*.9=$<<30000*.9=27000>>27,000 That means he was out of pocket 27,000-16,000=$<<27000-
16000=11000>>11,000
#### 11000

Example Prompt

Question: Mary has 6 jars of sprinkles in her pantry. Each jar of sprinkles can decorate 8 cupcakes.
Mary wants to bake enough cupcakes to use up all of her sprinkles. If each pan holds 12 cupcakes,
how many pans worth of cupcakes should she bake?
Answer:
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B SWE-bench Lite

B.1 Experimental Setup

For our experiments, we use DeepSeek-Coder-V2-Instruct with the Moatless Tools agent framework (at
commit a1017b78e3e69e7d205b1a3faa83a7d19fce3fa6). We use Voyage AI [5] embeddings for retrieval,
the default used by Moatless Tools. We make no modifications to the model or framework, using them
entirely as off-the-shelf components.

With this setup, we sample 250 independent completions for each problem using standard temperature-
based sampling. To determine the optimal sampling temperature, we conducted a sweep on a random subset
of 50 problems from the test set, testing temperatures of 1.0, 1.4, 1.6, and 1.8. Based on these results, we
selected a temperature of 1.6 for our main experiments.

B.2 Test Suite Flakiness

During our analysis, we identified 34 problems in SWE-bench Lite whose test suites had flaky tests. Using
the SWE-bench testing harness provided by the authors of SWE-bench, we tested each solution repeatedly:
for some solutions, sometimes the solution was marked as correct, and other times it was marked as incorrect.
In 30 of these 34 cases, we observed flakiness even on the correct solutions provided by the dataset authors.
Table 3 lists the problem IDs of the 34 instances with flaky tests.

Table 3: Instance IDs of problems from SWE-bench Lite that have flaky tests.

Repository Instance IDs

django django django-13315, django django-13447, django django-13590,

django django-13710, django django-13757, django django-13933,

django django-13964, django django-14017, django django-14238,

django django-14382, django django-14608, django django-14672,

django django-14752, django django-14915, django django-14997,

django django-14999, django django-15320, django django-15738,

django django-15790, django django-15814, django django-15819,

django django-16229, django django-16379, django django-16400,

django django-17051

sympy sympy sympy-13146, sympy sympy-13177, sympy sympy-16988

requests psf requests-863, psf requests-2317,

psf requests-2674, psf requests-3362

scikit-learn scikit-learn scikit-learn-13241

matplotlib matplotlib matplotlib-23987

An additional instance, astropy astropy-6938, was flaky on some machines and not others. The authors of
SWE-bench were able to reproduce the flakiness; however, we were unable to. Our preliminary investigation
indicates this specific issue is due to unpinned versions of dependencies in the docker environments that run
the unit tests.

Here, we include results on a subset with the problems in Table 3 removed (266 problems). For the full
dataset evaluation, on any problem that has flaky tests, we run the test suite 11 times and use majority
voting to determine whether a solution passed or failed. For the evaluation on the subset without flaky
tests, all baselines we compare against release which problems they correctly solve, so we simply removed the
problems with flaky tests and recomputed their scores.
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Figure 9: SWE-bench Lite results, without and with problems that have flaky tests. For the graph on the left, all
problems in Table 3 are excluded. For the graph on the right, all problems are included. We note that the trend is the
same with or without the flaky tests.

C Scaling Law Details

C.1 Experimental details

To fit exponentiated power laws to coverage curves, we first sample 40 points spaced evenly along a log scale
from 0 to 10, 000 and remove duplicates. We then use SciPy’s [55] curve_fit function to find the a and b
parameters from Equation 3 that best fit these points.

C.2 Additional results

In Figure 10, we show additional results fitting power laws to coverage curves for an expanded set of datasets
and models.
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Figure 10: Fitting exponentiated power laws to coverage curves for an expanded set of tasks and models.
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D Precision Details

To calculate the Majority Vote, Reward Model + Best-of-N and Reward Model + Majority Vote metrics,
we use the same 128 problem subsets for both MATH and GSM8K datasets introduced in Section 2. Each
problem corresponds to 10,000 samples for each model we test. For each verification method, we take 100
random subsets of size k and calculate the success rate using each subset. We report the mean and standard
deviation across subsets in Figure 7. To calculate the Majority Vote answer, we take the plurality answer in
each subset (note that two answers are considered equivalent if they are exact string matches or if is_equiv
evaluates to true). For the Reward Model + Best-of-N, we take the answer with the highest score assigned by
the reward model. For the Reward Model + Majority Vote metric, we sum the reward model score across all
the samples with the same final answer, and use the final answer with the highest sum.
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E GSM8K incorrect answer

As discussed in 4.1, we identify that a problem in the GSM8K test set (index 1042 on HuggingFace) has an
incorrect ground truth solution.

Question

Johnny’s dad brought him to watch some horse racing and his dad bet money. On the first race, he
lost $5. On the second race, he won $1 more than twice the amount he previously lost. On the third
race, he lost 1.5 times as much as he won in the second race. How much did he lose on average that
day?

Answer

On the second race he won $11 because 1 + 5× 2 =<< 1 + 5 ∗ 2 = 11 >> 11
On the third race he lost $15 because 10× 1.5 =<< 10 ∗ 1.5 = 15 >> 15
He lost a total of $20 on the first and third races because 15 + 5 =<< 15 + 5 = 20 >> 20
He lost $9 that day because 11− 20 =<< 11− 20 = −9 >> −9
He lost an average of $3 per race because 9/3 =<< 9/3 = 3 >> 3
#### 3

The mistake is in the second line of the answer: on the third race, Johnny’s dad lost $16.5, not $15, meaning
he made $11 and lost $16.5 + $5 = $21.5. So, the answer is an average loss of $3.5 per race, not $3 per race
(the answer in the dataset).
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